Chowdhury, S., Covic, A., Acharya, R. Y., Dupee, S., Ganji, F., & Forte, D. (2020). Physical Security in the Post-quantum Era: A Survey on Side-channel Analysis, Random Number Generators, and Physically Unclonable Functions. ArXiv:2005.04344 [Cs]. http://arxiv.org/abs/2005.04344 Cite
Alam, M. M., Tajik, S., Ganji, F., Tehranipoor, M., & Forte, D. (2019). RAM-Jam: Remote Temperature and Voltage Fault Attack on FPGAs using Memory Collisions. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 48–55. https://doi.org/10.1109/FDTC.2019.00015 Cite
Kiaei, P., Mercadier, D., Dagand, P.-É., Heydemann, K., & Schaumont, P. (2020). Custom Instruction Support for Modular Defense against Side-channel and Fault Attacks. IACR Cryptol. EPrint Arch., 2020, 466. https://eprint.iacr.org/2020/466 Cite
Yao, Y., Kathuria, T., Ege, B., & Schaumont, P. (2020). Architecture Correlation Analysis (ACA): Identifying the Source of Side-channel Leakage at Gate-level (No. 1192). https://eprint.iacr.org/2020/1192 Cite
Mus, K., Islam, S., & Sunar, B. (2020). QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 1071–1084. https://doi.org/10.1145/3372297.3417272 Cite
Ganji, F., Tajik, S., Stauss, P., Seifert, J.-P., Tehranipoor, M., & Forte, D. (2020). Rock’n’roll PUFs: crafting provably secure pufs from less secure ones. Journal of Cryptographic Engineering. https://doi.org/10.1007/s13389-020-00226-7 Cite
Moghimi, D., Sunar, B., Eisenbarth, T., & Heninger, N. (2020). TPM-FAIL: TPM meets Timing and Lattice Attacks. 2057–2073. https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm Cite
Tol, M. C., Yurtseven, K., Gülmezoglu, B., & Sunar, B. (2020). FastSpec: Scalable Generation and Detection of Spectre Gadgets Using Neural Embeddings . CoRR, abs/2006.14147. https://arxiv.org/abs/2006.14147 Cite
Ganji, F., Tajik, S., Fäßler, F., & Seifert, J.-P. (2016). Strong Machine Learning Attack Against PUFs with No Mathematical Model. In B. Gierlichs & A. Y. Poschmann (Eds.), Cryptographic Hardware and Embedded Systems – CHES 2016 (pp. 391–411). Springer. https://doi.org/10.1007/978-3-662-53140-2_19 Cite
Krishnan, A. S., Suslowicz, C., Dinu, D., & Schaumont, P. (2019). Secure Intermittent Computing Protocol: Protecting State Across Power Loss. In J. Teich & F. Fummi (Eds.), Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019 (pp. 734–739). IEEE. https://doi.org/10.23919/DATE.2019.8714997 Cite
Krachenfels, T., Ganji, F., Moradi, A., Tajik, S., & Seifert, J.-P. (2020). Real-World Snapshots vs. Theory: Questioning the t-Probing Security Model. CoRR, abs/2009.04263. https://arxiv.org/abs/2009.04263 Cite
Tajik, S., Lohrke, H., Seifert, J.-P., & Boit, C. (2017). On the Power of Optical Contactless Probing: Attacking Bitstream Encryption of FPGAs. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 1661–1674. https://doi.org/10.1145/3133956.3134039 Cite